首页新闻研究财经行业数据市场娱乐 军事商学院时尚旅游人物
更多
联系我们 广告服务网站地图

凯文凯利:人工智能就在我们眼前

财智榜样  2014/11/10 10:59:37 来源:中研网
中研网讯:

    这一发现开启了神经网络新的可能性,使得神经网络能容纳上亿个节点间的连接。传统的处理器需要数周才能计算出拥有1亿节点的神经网的级联可能性。而吴恩达发现,一个GPU集群在一天内就可完成同一任务。现在,一些应用云计算的公司通常都会使用GPU来运行神经网络,例如,Facebook会籍此技术来识别用户照片中的好友,Netfilx也会依其来给5000万订阅用户提供靠谱的推荐内容。

    2.大数据,每一种智能都需要被训练。哪怕是天生能够给事物分类的人脑,也仍然需要看过十几个例子后才能够区分猫和狗。人工思维则更是如此。即使是(国际象棋)程序编的最好的电脑,也得在至少对弈一千局之后才能有良好表现。人工智能获得突破的部分原因在于,我们收集到来自全球的海量数据,以给人工智能提供了其所需的训练。巨型数据库、自动跟踪(self-tracking)、网页cookie、线上足迹、兆兆字节级存储、数十年的搜索结果、维基百科以及整个数字世界都成了老师,是它们让人工智能变得更加聪明。

    3.更优的算法,20世纪50年代,数字神经网络就被发明了出来,但计算机科学家花费了数十年来研究如何驾驭百万乃至亿级神经元之间那庞大到如天文数字一般的组合关系。这一过程的关键是要将神经网络组织成为堆叠层(stackedlayer)。一个相对来说比较简单的任务就是人脸识别。当某神经网络中的一组比特被发现能够形成某种图案——例如,一只眼睛的图像——这一结果就会被向上转移至该神经网络的另一层以做进一步分析。接下来的这一层可能会将两只眼睛拼在一起,将这一有意义的数据块传递到层级结构的第三层,该层可以将眼睛和鼻子的图像结合到一起(来进行分析)。识别一张人脸可能需要数百万个这种节点(每个节点都会生成一个计算结果以供周围节点使用),并需要堆叠高达15个层级。2006年,当时就职于多伦多大学的杰夫·辛顿(GeoffHinton)对这一方法进行了一次关键改进,并将其称之为“深度学习”。他能够从数学层面上优化每一层的结果从而使神经网络在形成堆叠层时加快学习速度。数年后,当深度学习算法被移植到GPU集群中后,其速度有了显著提高。仅靠深度学习的代码并不足以能产生复杂的逻辑思维,但是它是包括IBM的沃森电脑、谷歌搜索引擎以及Facebook算法在内,当下所有人工智能产品的主要组成部分。

中研网版权及免责声明

1、凡本网注明“来源:***(非中研网)”的作品,均转载自其它媒体,转载目的在于传递更多的信息,并不代表本网赞同其观点和对其真实性负责。

2、如因作品内容、版权和其它问题需要同本网联系的,请在30日内进行。

有关作品版权事宜请联系:0755-83770576 邮箱:report@chinairn.com

运动型多用车

2015-2020年中国运动型多用车市场运行策略及投资价值

第一部分 行业发展现状第一章 运动型多用车行业国内

牙膏

2015-2020年中国牙膏行业市场发展状况及投资战略研究

第一章 2013-2014年世界牙膏重点公司运营透析 10第1

铁路通信信号系统

2015-2020年中国铁路通信信号系统行业未来发展趋势预

第1章 中国铁路信息化行业的发展综述1.1 铁路信息化